Fundamental principles of solid mechanics: equilibrium equations, reactions, internal forces, stress, strain, Hooke's law, torsion, beam bending and deflection, and deformation in simple structures. Integrates aspects of solid mechanics with applications to mechanical and aerospace structures (engines and wings), and microelectronic and biomedical devices (thin films). Topics include stress concentration, fracture, plasticity, fatigue, visco-elasticity and thermal expansion. The course synthesizes descriptive observations, mathematical theories, and engineering consequences.